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Abstract Various geological materials on the ground

surface can be natural or artificial sources of pollutions. The

spatial distribution of tailings is required to investigate the

geological material pollutions. The objectives of this study

were to determine the main factors influencing tailing zo-

nations using a factor analysis, to determine the zonation of

tailings with a cluster analysis, and to simulate zonations

with three-dimensional coupled Markov chain (3D-CMC)

modeling. The database was composed of 12 excavated

exploratory holes in the Guryong mine tailings, for which

there were analytical data covering the physical, chemical,

and mineralogical aspects. The principal component anal-

ysis indicated that the tailing composition was mainly

affected by three factors out of 21 variables: pH, cation

exchange capacity, and mineral composition. Based on

these main factors, the tailings were classified into five

groups using a cluster analysis. Group I was approximately

50 cm deep from surface and had secondary gypsum

(CaSO4�2H2O) and jarosite (KFe3(SO4)2(OH)6). Group II

had low pH values caused by strong pyrite oxidation and the

greatest amounts of the secondary minerals. In group III and

IV, the quantity of the secondary minerals decreased. Group

V was characterized by primary calcite (CaCO3)

composition. These results were applied to the CMC

modeling, and the quantitative 3D distribution of tailing

was verified. For the cost-saving prediction of subsurface

heterogeneity, 3D-CMC modeling was executed using the

selected eight holes data among twelve holes. The unknown

four holes, GS3, GS6, GS8 and GS11, are identified as 89.7,

88.6, 80.7 and 81.1 %, respectively. They are recognized as

85.0 % of the total zonation. The zonation method of tail-

ings executed in this study can be utilized in predicting the

3D distribution of the pollution factor. This may be a useful

and economical method to identify the environmentally

hazardous materials in underground systems.
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Introduction

The sulfide-rich tailings are a potential source of low-pH

condition that results from the oxidation of sulfide minerals,

such as pyrite (FeS2). The degree of sulfide alteration can be

expressed with an index value from 0 to 10 with 0, repre-

senting no alteration and 10 representing complete alter-

ation of the tailings as a whole, and the oxidation profiles

are divided into the three zones (Blowes and Jambor 1990).

Multivariate statistical analysis is a mathematical technique

applied in multiple fields of geological investigations, such

as geochemistry (Häkli 1970), petrography (Saager and

Esselaar 1969), hydrogeology (Kim et al. 2005; Lambrakis

et al. 2004), and environmental geology (Davis 1986;

Grande et al. 1996). Acosta et al. (2011) and Hwang et al.

(2001) present the spatial variations using the multivariate

statistical approach in the mine area, but do not incorporate

uncertainty in the spatial prediction. Uncertainties in spatial
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predictions give rise to considerable uncertainty in appli-

cations such as risk assessment, cost estimation, and deci-

sion analysis (Li 2006; Li and Zhang 2005). Carle and Fogg

(1996, 1997) introduced the Markov chain based on indi-

cator geostatistics, where the variograms conventionally

used by geostatisticans are substituted by Makovian tran-

sitions. Park et al. (2005) improved two-dimensional cou-

pled Markov chain (CMC) model by applying the model to

sparsely distributed data directly stemming from the work

of Elfeki and Dekking (2001). They also demonstrated the

validity of the CMC in the three-dimensional space. For the

estimation of the spatial distribution of each horizon, the

three-dimensional CMC modeling was applied (Park et al.

2005; Park 2010).

This study aimed to provide specific information

regarding the mineralogical and physico-chemical charac-

terization and interactions that occur horizontally and

vertically within tailings in the Guryong mine, where the

abundant sulfide mineral is pyrite. From the results of this

study, the entire profile could suggest zonation and verify

the multivariate statistic analysis and 3D CMC modeling as

useful methods for determining the spatial distribution of

the tailings.

Description of the studied tailing area

The Guryong mine copper deposit was located in Buk-

myeon, Changwon City, South Korea (128�3800000–
128�3803000E, 35�1703000–35�1800000N; Fig. 1). The area

around the Guryong mine was underlain by andesite, which

was the host rock of the Cu-deposit. The deposits were

composed of many sulfide veins and of altered zones that

may be the result of hydrothermal solutions. The Cu ore is

typically composed of alternating bands of pyrite, chalco-

pyrite, calcite and quartz, and their bands were widely

distributed within the deposits (Kim and Oh 1966). The

principal gangue minerals were silicates such as quartz,

chlorite, mica and feldspar. The major steps in the milling

process were grinding, aeration and flotation. The tailings

impoundment, which operated from 1945 to 1971, has a

surface area of approximately 40,000 m2. The tailings were

deposited at 200–700 cm depth, which was immediately

above the bedrock. The runoff generated from the

impoundment ran into small streams that ended at nearby

farmland (Min et al. 1998). The average annual precipita-

tion was 1,509 mm and fell mainly during the summer. The

depths of the saturation zone below the tailings surface

varied; however, the average depth was less than 250 cm

below the surface. The hydraulic conductivity of the tail-

ings ranged from 8.7 9 10-5 cm/s to 1.6 9 10-2 cm/s.

The saturation originated from a perched aquifer in the

mine tailings. The porosity values ranged between 0.25 and

0.56 (Moon 2007).

Materials and methods

Sampling methods

The sampling site was constructed as elemental data using

GPS (Fig. 1, 60 9 40 9 10 m). Percussion drilling

Fig. 1 The map showing the

sample location of tailing in the

Guryong mine located 50 km

northeast of Changwon, Korea.

The 12 circles are sampling

point
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equipment was used to reach depths of 10 m in the first

field sampling expedition in 2004, during which twelve

holes were drilled. However, the GS1, GS2, GS3, and GS4

holes are drilled to only 7 m. The cores for analysis were

collected in sections 1 m long and approximately 4 cm in

diameter. Each meter of drill core was separated into five

20 cm lengths. Smaller sub-samples were taken, when

colors change. Twelve holes were drilled in the tailings,

from which 364 samples were collected. The samples were

sealed in plastic bottles and stored in an ice-packed cooler

box until ready for study.

Experimental methods

The samples were air-dried (25 �C) and sieved to 2 mm in

the laboratory. The dry samples were stored in polyeth-

ylene containers at room temperature. Each sample was

analyzed for its physical (particle distribution), chemical

(acid-leachable fraction and cation exchange capacity) and

mineralogical characteristics. The particle size distribu-

tions of all samples were measured by a grain-size ana-

lyzer (Mastersizer 2000, Malvern Instruments Ltd). The

analyzer separated each sample into clay (\2 lm), silt

(2–53 lm) and sand ([53 lm) fractions. The cation

exchange capacity (CEC) was measured following the

work of Borden and Giese (2001). The pH was deter-

mined in a 1:5 ratio suspension of dewatered tailings

using a 6107BN, Thermo Orion pH meter, according to

the international standard. The acid-leachable fraction was

determined by dissolving a 5.0 g sample of dried tailings

in 50 ml of 20 % (v/v) HCl for 1 h in a 30 �C water bath.

The acidified water samples were analyzed by spectro-

photometer (HACH DR/4000U) for Al, Fe, Mn, and Cu,

and by ICP-Mass (Perkin Elmer ELAN 6100) for Pb, Zn

and Cd. All of the samples were analyzed as a bulk

sample by X-ray diffraction (XRD), using a Max-Science

MXP-3 system. The quantitative analysis of the minerals

was performed with the SIROQUANT V2.5 program

(Taylor and Zhu 1992).

Multivariate statistical analysis and geostatic approach

Principal component analysis

Factor analysis, including principal component analysis

(PCA) was carried out to reveal the interaction among the

variables. The PCA is a multivariate statistical technique

used for data reduction and for deciphering patterns within

large sets of data (Wold 1987; Joliffe 1986). The principal

components are calculated so that they take into account

the correlations present in the original data, but are

uncorrelated to one another. Generally, the first two or

three principal components account for the majority of the

variance in the original data, thus reducing the data to two

or three dimensions. The goal of the PCA is to describe the

majority of the variance in the large dataset in a few

principal components, with the remaining unexplained

variance consisting of nose (Gauch 1993).

Cluster analysis

The cluster analysis (CA) was applied to the factor scores

obtained from the factor analysis, to separate the tailing

samples into several physical, chemical and mineralogical

regimes. The CA refers to a set of techniques designed to

classify observations; therefore, members of the resulting

groups are similar to each other but distinct from other

groups. Hierarchical clustering, which successively joins

the most similar observations, is one of the most common

approaches (Davis 1986). However, the CA applied in this

study was the nonhierarchical type. This type has been

applied to K-means method for sample classification. A set

of K seed points can be used as cluster nuclei around which

the set of m data units can be grouped. The following

methods are representative examples of how such seed

point can be generated (Anderberg 1973).

Coupled Markov chain model

The coupled Markov chain (CMC) in two-dimensional

space has been described by Elfeki and Dekking (2001). In

the Markovian framework, the conditional distribution of

any future state is independent of the past history if the

present state is given. That is, if the discrete stochastic

process {Zn, n = 0, 1, 2,…} is a sequence of random

variables taking values in the state space{S1, S2, …., Sn}

(Fig. 2), then the sequence is a Markovian process if (Ross

2000):

Fig. 2 Schematic diagram of one-dimensional coupled Markov chain

calculation (Sp, state of cell M; Sj, state of cell l; and Sq, state of cell

N; Park et al. 2005)
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Pr Zi ¼ Sk= Zi�l ¼ Sl; Zi�2 ¼ Sn; Zi�3 ¼ Sr; . . .:; Z0 ¼ Sp

� �

¼ Pr Zi ¼ Sk= Zi�l ¼ Slð Þ ¼ Plk ð1Þ

where Plk is the transition probability from a state (Sl) to

another state (Sk). Transition probabilities can be estimated

from the relative frequencies of transitions from a certain

state to other states. These transition probabilities can be

arranged into an n 9 n matrix:

P ¼

P11 � � � P1n

� � � � �
� � P1k � �
� � � � �

P11 � � � Pnn

����������

����������

ð2Þ

where n is the number of states in the system. In the matrix

P, all elements must be non-negative (P1k C 0), and the

sum of the elements in each row is shown in Eq. 1. The

transition probabilities considered in Eq. 2 are called one-

step transition, meaning that the transition from one state to

another occurs in one step.

The conditional probability equation that is governed by

the immediate past and the future state was derived by

Elfeki and Dekking (2001):

PrðZi ¼ Sk=Zi�l ¼ Sl; ZN ¼ SqÞ ¼
pN�i

jq Plj

pN�iþ1
lq

ð3Þ

where ZN is a random variable of the future, and Sq is the

future state.

This can be extended to three-dimensional space by

coupling three state spaces, {S1,S2, …, Sn} 9 {S1,S2, …,

Sn} 9 {S1,S2, …, Sn}, with the assumption that a transition

to a given location in three-dimensional space from two

independent chains must be to the same state from both

chains (Fig. 2). A simple modification to Eq. (3) yields the

three-dimensional CMC formulation (Park 2010). The

algorithm for stochastic prediction was examined follow-

ing the steps described by Park (2010).

Results and discussion

Physico-chemical and mineralogical characteristic

of tailing

The representative drill core investigation of this study

indicated that the tailings were underlain by 200–700 cm

of soil over bedrock. The physico-chemical and mineral

quantitative analysis of the representatives collected from

the GS3, GS6 and GS12 core samples in the Guryong mine

tailings are presented in Table 1 and Fig. 3, and the others

are presented in Moon (2007). The presented sampling

points are not adjoining to each row a representative

(Fig. 1).

The pH values of the samples ranged between 3.0 and

8.0. In the shallow tailings, the pH was less than 3.3, but it

increased with depth to greater than pH 7.0, suggesting that

the acidic pore water was being neutralized (Fig. 3).

Except for the GS3 core, which lacked a water table, the

GS12 drill core containing fine tailing particles near the

water table (approximately 250 cm) was confirmed calcite

(CaCO3), which can neutralize acid. However, the GS6

cores contained coarse particles near the water table, did

not have observed calcite (Table 1) and did not increase to

a pH greater than pH 6.0 (Fig. 3). The tailing grain size and

moisture content were associated with the sulfide mineral

oxidation (Blowes and Jambor 1990; Moon et al. 2008a).

In this study area, the most abundant sulfide mineral was

pyrite which oxidizes readily when exposed to water and

atmospheric oxygen. The oxidation of sulfide minerals was

evident by the yellowish brown color (10YR 5/6) of the

surficial tailings compared to the dark grey color (N6/0) of

the tailings (Table 1).

The Fe2? generated by pyrite oxidation may be further

oxidized, hydrolyzed and precipitated as jarosite, schw-

ertmannite and Fe-oxyhydroxide which have confirmed the

presence by SEM–EDX (Fig. 4) in the work of Moon et al.

(2008b). This suggested the proposed schematic model for

mineral cycling in the tailings (Fig. 5), which can be found

when the dissolution of primary and precipitated secondary

minerals had generated a low-pH condition by oxidizing

pyrite. Figure 5 can be summarized that the oxidation of

pyrite is the most important reaction controlling the

changes in pH, the dissolution of the primary silicates and

carbonates, the precipitation of secondary mineral phases,

acid neutralizing, and heavy metal behaviors through the

profile.

An extensive investigation of the sulfide mineral oxi-

dation mechanisms has been presented by Nordstrom

(1982), Blowes and Jambor (1990), and McGregor et al.

(1998). The evidence of sulfide-oxidation reactions in the

tailings are the depletion of sulfide minerals in the near

sub-surface zone of the tailings. The XRD patterns for a

representative sample of the tailings (GS6 and GS12)

exhibited large differences in mineralogy that changed

markedly with depth (Table 1). The mineralogical and

major ion analysis of the tailing solids conducted in con-

junction with the detailed pore water analysis provided

greater insight into the future geochemistry evolution

(Blowes et al. 1998). The analyses for major ions and acid-

leachable fraction were performed on samples of tailing

solids collected below the tailings surface. The concen-

tration of the acid-leachable fraction and whole rock

analyses of tailings was similar to those from observation

(Fig. 3). The results of the acid–base accounting were
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Table 1 Physical properties and mineral quantitative analysis of the collected samples from the representative GS3, GS6 and GS12 cores in the

Guryong mine tailings

Depth (cm) Wet color Size fraction (vol. %, \2 mm) Mineral composition (wt. %)

Clay Silt Sand Py Chl Gy Ja Calc

GS3

1 0–45 7.5YR4/3 10.4 45.0 44.6 0.0 11.5 4.4 0.0 0.0

2 45–50 2.5Y5/2 10.1 38.7 51.2 0.0 7.5 3.2 0.0 0.0

3 50–60 2.5GY6/1 11.9 70.9 17.2 14.1 3.3 17.8 0.0 0.0

4 60–80 7.5Y4/2 8.3 53.5 38.2 24.0 11.8 14.3 0.0 0.0

5 80–100 10Y4/1 16.4 82.1 1.5 20.9 16.0 8.9 0.2 0.0

6 100–155 5GY3/1 0.9 15.3 83.8 17.1 21.8 3.9 0.0 0.0

7 155–172 2.5Y4/4 0.9 12.1 87.0 3.4 26.8 8.7 0.0 0.0

8 172–200 7.5Y4/2 3.9 34.0 62.1 19.0 22.9 7.9 0.0 0.0

9 200–250 10Y3/2 1.4 14.3 84.3 19.2 17.4 15.9 0.0 0.0

10 250–270 10YR3/4 4.0 30.9 65.1 27.2 20.4 12.5 0.0 0.0

11 270–280 2.5GY4/1 4.8 30.7 64.5 10.3 26.0 15.3 0.0 0.0

12 280–300 10Y4/2 5.4 43.8 50.8 19.6 29.4 19.7 0.0 0.0

GS6

1 0–25 10YR4/2 20.3 65.8 13.9 0.0 8.5 0.0 7.5 0.0

2 25–40 2.5Y6/4 8.3 21.3 70.4 0.0 5.1 4.0 18.3 0.0

3 40–60 10Y4/4 4.2 29.0 66.8 48.7 9.7 3.8 0.0 0.0

4 60–75 G4/1 0.7 10.1 89.2 39.8 9.5 3.5 0.0 0.0

5 75–100 N3/0 1.4 19.5 79.1 36.6 13.2 3.9 0.0 0.0

6 100–160 7.5GY4/1 0.5 6.9 92.6 58.4 9.8 1.4 0.0 0.0

7 160–180 GY4/1 0.5 8.1 91.3 52.3 13.1 3.7 0.0 0.0

8 180–185 10GY4/1 1.9 18.1 80.0 33.4 16.1 9.4 1.7 0.0

9 185–200 5Y4/1 6.1 52.1 41.8 18.5 23.4 14.9 1.2 0.0

10 200–280 GY4/1 3.6 23.5 72.9 20.3 23.2 9.0 0.9 0.0

11 280–300 2.5GY4/1 9.8 51.2 39.0 30.3 24.6 6.1 2.1 0.0

12 300–400 G4/1 3.9 20.3 75.8 20.7 22.3 7.3 0.5 0.0

13 400–450 7.5GY4/1 2.9 17.0 80.1 31.2 23.5 10.9 0.2 0.0

14 450–470 N4/0 7.0 38.2 54.8 11.1 33.8 4.8 0.0 0.0

15 470–475 2.5GY3/1 10.7 53.9 35.4 6.2 14.9 2.5 1.0 0.0

16 475–500 10YR3/2 15.9 59.1 25.0 1.7 5.1 3.5 0.6 0.0

17 500–555 7.5YR3/4 19.7 55.0 25.3 0.0 5.8 3.0 0.0 0.0

18 570–570 10YR4/3 16.5 42.3 41.2 0.0 6.9 2.7 0.0 0.0

19 570–600 10YR4/3 10.2 31.1 58.7 0.0 19.0 1.7 0.0 0.0

GS12

1 0–62 2.5YR3/4 18.4 64.9 16.7 0.0 10.7 1.6 0.0 0.0

2 62–75 10YR4/5 15.8 67.7 16.5 0.0 18.5 2.5 5.1 0.0

3 75–80 5YR3/4 18.9 65.6 15.6 0.0 13.9 11.5 3.0 0.0

4 80–100 7.5YR4/3 20.3 64.8 14.9 1.0 12.4 15.4 4.0 0.0

5 100–170 5Y3/2 16.2 72.0 11.8 22.5 16.6 9.7 0.9 0.0

6 170–175 N4/0 1.8 31.9 66.3 16.3 11.6 10.9 0.0 0.0

7 175–180 7.5Y4/2 2.3 24.5 73.2 9.7 15.3 11.7 0.0 0.0

8 180–185 7.5Y4/2 1.9 18.6 79.5 8.7 12.8 10.3 0.0 0.0

9 185–200 2.5Y3/2 2.7 18.7 78.6 5.0 13.4 8.5 0.0 0.0

10 200–230 10GY4/1 6.9 42.9 50.2 11.5 19.4 11.3 0.0 0.0

11 230–250 10GY4/1 3.3 18.6 78.1 19.1 23.6 11.4 0.0 0.0

12 250–270 N4/0 10.3 77.6 12.1 19.8 23.5 14.6 0.0 0.0
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analyzed to allow a more detailed prediction of the acid-

producing potential of the tailings (Moon et al. 2008a). The

results of this analysis showed a potential for acid gener-

ation in most samples, with the exception of those from

surficial tailings. The potential for a given rock to generate

and neutralize acid depends on its quantitative mineralog-

ical composition and its particle size. An analysis of the

chemistry of the major ions and a direct mineralogical

quantitative analysis of bulk samples enables more detailed

information on acid-neutralizing capacity. The Fe2O3 and

SO3 contents had few variations in the upper layer of

tailings, which suggest the existence of jarosite, schwert-

mannite and Fe-oxyhydroxide as the secondary mineral

phases (Moon et al. 2008b).

Simplified parameters by PCA

Multivariate statistical analyses were performed with the

physical (particle distribution), chemical (acid-leachable

fraction and cation exchange capacity) and mineralogical

data from Guryong mine tailing area, Korea. Multivariate

statistical analyses were performed using a methodology

suggested by Davis (1986). A statistical computer code was

conducted with the well-known software package ‘SPSS

12.0’ (IBM Company).

Various physico-chemical and mineralogical results

could be simplified using the PCA, which was applied to

determine the interrelations among the 21 variables

examined in the tailings. Accordingly, a small number of

factors will usually account for approximately the same

amount of information as do the much larger set of original

variables (Lambrakis et al. 2004). There are many recom-

mendations for selecting the optimal number of factor.

According to this criterion, four factors have been chosen

for this study. The factor analysis used in this study was the

PCA with the practical application of varimax factor

rotation (Kaiser 1958) for the reason that this method easily

explains the PCA results. Generally, the first two or three

principal components account for the majority of the ori-

ginal data, thus reducing the data to two or three dimen-

sions (Gauch 1993). Table 2 provides the eigenvalues of

the extracted factors, the eigenvalue differences among

factors, and the proportions of total sample variance

explained by the factors. The analysis generated 4 factors

which accounted for 54.2 % of variance. The factors

indicate communality. The bold numbers in Table 2 signify

that the 21 variables belong anywhere in the factors. The

first factor explained 19.3 % of the total variance, and

demonstrated that most of the covariance in the system’s

properties may be explained by the variances of the cation

exchange capacity (CEC), clay, silt, sand, albite and mica.

The first factor emphasizes the principal role of clay, silt

and sand in the physical composition of the tailings. The

relationship among CEC, clay, silt and sand indicates

influence on tailing weathering. The second, third and

fourth factors explain 16.0, 9.5 and 9.4 % of the total

variance, respectively, and 3.4, 2.0 and 2.0 of the eigen-

value, respectively. The second factor explained the rela-

tionship of the environment condition completed by the

mineral dissolution. Most reactions in the gas, water and

rock systems involve or are controlled by the pH of the

system (Langmuir 1997). Other factors may express the

relationship among pyrite oxidation, releasing Fe2? ions

and precipitating a second mineral. The factor analysis

indicates that tailing composition, which accounts for

54.2 % of the total variance in 21 variables, was mainly

affected by three factors: pH, particle size and mineral

composition (Table 2). The correlation between the PC1

and PC2 is given in Fig. 6. PC1 indicates the decrease of

particle size and PC2 is related to the dissolution of min-

erals and the pH. These results might be related to the

characteristics along the depth of the study area.

Table 1 continued

Depth (cm) Wet color Size fraction (vol. %, \2 mm) Mineral composition (wt. %)

Clay Silt Sand Py Chl Gy Ja Calc

13 270–300 N4/0 13.1 80.4 6.5 15.7 30.3 1.7 0.0 0.0

14 300–470 5G3/1 2.9 33.6 63.5 30.7 25.6 1.3 0.0 0.0

15 470–500 N4/0 15.3 84.6 0.1 8.9 45.1 0.0 0.0 6.4

16 500–530 7.5Y5/1 13.8 84.0 2.2 8.8 51.7 0.0 0.0 4.3

17 530–550 N4/0 14.1 85.9 0.0 9.3 51.2 0.0 0.0 4.4

18 550–570 N4/0 18.2 81.8 0.0 11.0 38.0 0.0 0.0 4.9

19 570–600 N4/0 19.2 80.8 0.0 8.3 33.2 0.0 0.0 4.0

20 600–675 N3/0 7.1 42.9 50.0 0.3 5.9 1.1 0.0 0.0

21 675–680 10YR4/4 9.1 61.7 29.2 0.0 1.5 0.4 0.0 0.0

22 680–700 7.5YR3/3 2.5 21.5 76.0 0.0 1.5 0.0 0.0 0.0

Py pyrite, Chl chlorite, Gy gypsum, Ja jarosite, Cal calcite
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Zonation of tailings through cluster analysis

The 3D distribution of subsurface heterogeneity must be

quantitatively characterized. The CA was performed based

on the factor scores obtained from the factor analysis

results. To suggest the zonations within tailings in this

study, nonhierarchical CA has been applied to the K-means

method for the sample classification. The K-means cluster

analysis is an efficient tool for the zonation of the tailings,

because it does not compute the distance between all pairs

of cases (SPSS 2001). This method requires specifying the

number of clusters. An initial cluster number of five zones

was chosen that replicated the division of the tailings

profile by Moon et al. (2008b). Table 3 presents an average

value of variants for each group after cluster analysis for

the 12-hole samples. The sand and silt among the param-

eters by the factor analysis were excluded from the cluster

analysis, because these variables were affected by the

Fig. 3 Diagrams showing the vertical changes in the total and 0.1 N HCl extracted of some representative elements for the core samples
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Fig. 4 Scanning electron

microscopic (SEM) images

showing typical jarosite (a, b),

schwertmannite (c, d), and Fe-

oxyhyroxide [ferrihydrite, or

amorphous Fe(OH)3] (e, f) from

the selected samples among

core samples in Moon et al.

(2008b)

Fig. 5 The proposed conceptual model of physico-chemical conditions and phases–water relationships controlling the element behaviors in the

Guyrong mine tailings (Moon et al. 2008b). fh ferrihydrite, jt jarosite, sh schwertmannite, gy gypsum, ca calcite, and py pyrite
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largest absolute correlation among each variable and any

cluster function. The groups for the CA were discriminated

by their location within the tailings. Group I had the

greatest CEC, and group II had the smallest pH condition

and the greatest jarosite and gypsum content. Groups III

and IV differed by their particle size distributions. The

calcite identified in group V had a neutral pH. Ultimately,

the pH and minerals can be interpreted as the most sig-

nificant variables in the cluster analysis.

3D-coupled Markov chain modeling

A brief description of the CMC (Elfeki and Dekking 2001),

modeling described it as stochastic in nature. The CMC,

coupled Markov chains, the first of which was used to

describe the sequence of lithologies in the vertical direction

and the second in the horizontal direction (Elfeki 2006).

The CMC modeling has great potential to be integrated

with soft information such as geological inference and

geophysical data because of its explicit scheme. The

applications of CMC on outcrops and real borehole data are

available (Elfeki and Dekking 2005; Elfeki 2006). The

surface and subsurface heterogeneities are complex mix-

tures of discrete structures, which may be categorized by

soil type or geology and are characterized by more or less

discontinuous boundaries and random features (Park et al.

2007). For the spatial distribution of the tailings, the 3D-

CMC simulation technique is applied for revealing the

distribution of each horizon. The 3D-CMC modeling was

applied to the cross section in Fig. 1 (60 9 40 9 7 m).

Figure 7a is simulated solely from the realized result using

five zonations from the 12-hole cluster analysis. The
Fig. 6 Plots of PC1 versus PC2 using physico-chemical–mineralog-

ical analysis results for the 12 profiles

Table 2 Principal component analysis (PCA) results using factors of

12-hole profile samples

PC1 PC2 PC3 PC4

Eigenvalue 4.1 3.4 2.0 2.0

% variance 19.3 16.0 9.5 9.4

Cumulative % 19.3 35.3 44.7 54.2

Variables

pH 0.11376 0.68386 0.27556 -0.31331

CEC 0.42598 -0.53072 -0.20549 0.28137

Clay 0.94330 -0.07598 -0.07561 0.10008

Silt 0.93423 0.12949 -0.05917 -0.06232

Sand -0.95517 -0.09141 0.06364 0.03141

Gypsum -0.21997 -0.24252 0.33106 0.44208

Pyrite -0.36955 0.09281 0.07891 -0.76479

Jarosite 0.09633 -0.37158 -0.07446 0.47822

Calcite 0.29463 0.68068 -0.17395 -0.10944

Quartz 0.23405 -0.68673 -0.16779 0.31638

Albite -0.48282 -0.13980 -0.01291 0.65695

Chlorite 0.25774 0.87528 0.10877 -0.03113

Mica 0.59853 0.58943 0.01678 0.10072

Orthoclase 0.31351 -0.44923 -0.12189 -0.01964

Fe -0.11707 0.03556 0.85859 0.01046

Mn -0.03148 0.27301 0.82848 -0.10682

Al -0.16796 -0.08181 -0.27085 0.18550

Cu 0.11311 -0.06614 -0.11428 -0.22763

Pb 0.17657 0.05360 -0.04133 -0.35301

Zn -0.03918 -0.00977 0.36870 -0.01869

Cd 0.09359 -0.07477 -0.01889 0.00371

Table 3 Average values of variants for each zone after cluster

analysis for the 12-hole profile samples

Variable Cluster

I II III IV V

pH 3.72 3.65 4.97 5.49 7.00

CEC 12.43 5.42 2.25 2.17 3.61

Clay 13.85 6.81 4.46 5.57 13.63

Jarosite 1.86 2.25 0.09 0.19 0.00

Gypsum 1.95 9.95 4.21 7.73 0.39

Pyrite 0.06 7.89 43.66 23.09 14.11

Calcite 0.00 0.00 0.63 0.93 6.41

Quartz 62.99 34.17 19.36 22.66 18.95

Albite 11.47 20.70 9.33 13.62 6.50

Chlorite 9.65 12.86 16.04 23.08 39.20

Mica 3.89 4.19 4.10 5.68 10.66

Orthoclase 7.74 6.72 2.57 3.13 3.80

Fe 0.0361 0.1543 0.1691 0.2056 0.1352

Mn 0.0069 0.0062 0.0190 0.0326 0.0249
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detailed soil logging of 12 boreholes within a relatively

small area is available. In each borehole, the soil is sample

at every 0.05-m interval. The model domain was divided

into 434,700 cells with dimension of 1 9 1 9 0.05 m.

Group VI not including the tailing is bottom soil. The

tailings were buried deeper into the southwest. For the cost-

saving prediction of subsurface heterogeneity, 3D-CMC

modeling was, respectively, performed on the 6-profile, the

8-profile and the 10-profile data among 12-profile data. The

predicted groups were classified correctly 75.3 % (6 pro-

files), 85.0 % (8 profiles) and 96.3 % (10 profiles),

respectively. The 8 profiles were calculated as the most

efficient profile number (Fig. 7b). To identify the 3D dis-

tribution of subsurface heterogeneity, the 3D-CMC mod-

eling required borehole data of the angular points and those

within 40 m in this study area. The result of the unknown

four holes as CMC modeling is comparable to the known

hole data (Fig. 8). The unknown four holes, GS3, GS6,

GS8 and GS11, are identified as 89.1, 88.6, 80.7 and

81.1 %, respectively (Table 4). The 3D-CMC modeling

can be applied to the 3D distribution of subsurface

Fig. 7 3D-CMC simulated singly realization result using zonation for

the 12 holes (a) and the 8 holes (b) from cluster analysis result

Fig. 8 Compared GS3, GS6, GS8 and GS11 profiles (known) for 12

holes with GS3, GS6, GS8 and GS11 profiles (unknown) predicted for

8 holes data by 3D-CMC modeling. The 8 holes excluded GS3-, 6-, 8-

and 11-hole data
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heterogeneity and used in the characterization of the sur-

face environment.

Conclusions

The detailed vertical and horizontal distribution of the site

was crucial to design an efficient risk management system

associated with the tailings from abandoned mines. The

detailed characterization of mineralogical alteration with

depth and of the risks associated with rich pyrite tailings

from abandoned mine provides insight into the future of the

geochemical progression of the tailings. Various physico-

chemical and mineralogical results could be simplified

using the PCA, which was applied to determine the inter-

relations among the 21 variables examined in the tailings.

The factor analysis indicates that tailing composition,

which accounts for 54.2 % of the total variance of 21

variables, is mainly affected by three factors: pH, particle

size and mineral composition. In addition, the cluster

analysis was employed for the vertical zonation of the

tailings. The groups for the cluster analysis were divided

into five zones that altogether captured the entire profile of

the Guyroung mine tailings. In groups I and II, the presence

of jarosite and gypsum was confirmed by the oxidation of

pyrite. Groups III and IV differ from the other groups in

their particle size. Group V was identified as having calcite

(CaCO3) and a neutral pH. These results were compiled in

a database, and by applying the CMC, the quantitative 3D

distribution of the tailings was confirmed. The mineralog-

ical and geochemical changes were investigated among the

zones in sulfuric copper tailings. The different depths in the

same zone can enable the prediction of the oxidation pro-

cesses occurring in the sulfide minerals. For the cost-saving

prediction of subsurface heterogeneity, 3D-coupled Mar-

kov chain (3D-CMC) modeling was, respectively, per-

formed on the 6 profile, the 8 profile and the 10 profile data

among 12 profiles data. The 8 profile is calculated as the

most efficient profile number. The profiles predicted by

3D-CMC modeling unknown holes (GS3, GS6, GS8, and

GS11) are identified as 89.1, 88.6, 80.7 and 81.1 %,

respectively. These can be applied to design an efficient

method of managing from abandoned mines.
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